
Chapter 5

Power Series

5.1 Definitions of power series at any point a and at a = 0

A power series is a type of series with terms involving a variable x. All terms

of this series involve powers of x, and hence a power series can be thought of as

an infinite polynomial. Power series are used to represent common functions and

also to define new functions.

In this chapter we define power series and show how to determine when a power

series converges and when it diverges. We also show how to represent certain

functions using power series as well as Taylor series.

Definition 5.1: An infinite series of the form
∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n + · · · . (5.1.1)

is called a power series in (x − c) or centered at x = c, where c′ns are

coefficients of the series, x is a variable, and a is a constant.

If a = 0 then (5.1.1) becomes
∞∑
n=0

cnx
n = c0 + c1x + c2x

2 + · · ·+ cnx
n + · · · . (5.1.2)

and is called a power series centered at 0 or a = 0.

Example 5.1:
∞∑
n=0

n!xn = 1+x+2!x2+3!x3+· · · is a power series centered at 0.
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Example 5.2:
∞∑
n=0

(x− 1)n

2n
= 1+

(x− 1)

2
+

(x− 1)2

4
+

(x− 1)3

8
+ · · · is a power

series centered at 1.

5.2 Convergence and Divergence of Power Series: Radius and Interval

of Convergence

A power series in x can be viewed as a function of x. i.e, f(x) =
∑∞

n=0 cn(x− a)n

with domain: the set of all x for which
∑∞

n=0 cn(x− a)n converges.

Theorem 5.1: For a power series
∑∞

n=0 cn(x − a)n, exactly one of the following

is true.

1. The series converges only at x = a (at its center),and diverges for all x 6= a.

2. The series converges absolutely for all x.

3. There exist a positive number R such that the series converges absolutely if

|x−a| < R, and diverges if |x−a| > R. At the values of x where |x−a| = R,

the series may converge or diverge.

The number in case (3) is called the radius of convergence of
∑∞

n=0 cn(x−a)n.

The set of all values of x for which the power series converges is called the in-

terval of convergence.

The interval of convergence for a given power series takes one and only one of the

forms: (a−R, a + R), (a−R, a + R], [a−R, a + R) or [a−R, a + R].

If
∑∞

n=0 cn(x − a)n converges only at x = a, then R = 0 and the interval of con-

vergence is a single point {a} or [a, a].

If
∑∞

n=0 cn(x − a)n for all x, then R = ∞ and the interval of convergence is the

entire real number, (−∞,+∞).

Activity I: For what values of x do the following power series converge? (Hint:

2



Use the generalized ratio test in chapter 4.)

(a)
∞∑
n=0

n!xn (b)
∞∑
n=0

xn

n!
(c)

∞∑
n=1

(x− 1)n

n
(d)

∞∑
n=0

xn.

Example 5.2: Find the radius and interval of convergence of the power series

(a)
∞∑
n=0

xn

n!
(b)

∞∑
n=0

n!(x− 2)n (c)
∞∑
n=1

(x− 5)n

n2
.

Solution:

(a) • At x = 0 (the center), the series converges trivially.

• If x 6= 0, take an = xn

n! and an+1 = xn+1

(n+1)! , then applying the Generalized

Ratio Test (GRT), we get

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣ xn+1

(n + 1)!
.
n!

xn

∣∣∣ = |x| lim
n→∞

1

n + 1
= 0 < 1.

Hence
∑∞

n=0
xn

n! converges absolutely for all x. Therefore, its radius of convergence

is R =∞, and its interval of convergence is (−∞,+∞).

(b) • At x = 2, the series converges trivially.

• If x 6= 2, take an = n!(x− 2)n and an+1 = (n+ 1)!(x− 2)n+1, then by GRT,

we get

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣(n + 1)!(x− 2)n+1

n! (x− 2)n

∣∣∣ = |x− 2| lim
n→∞

(n + 1) = +∞.

Hence
∑∞

n=0 n!(x − 2)n converges only at its center and diverges for all x 6= 2.

Therefore, the radius of convergence is R = 0 and the interval of convergence is

[2, 2] = {2}.
(c) • At x = 5, the series converges trivially.

• If x 6= 5, take an = (x−5)n
n2 and an+1 = (x−5)n+1

(n+1)2 , then by GRT, we get

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣(x− 5)n+1

(n + 1)2
.

n2

(x− 5)n

∣∣∣ = |x− 5| lim
n→∞

n2

(n + 1)2
= |x− 5|.
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Hence
∑∞

n=1
(x−5)n

n2 converges absolutely if |x− 5| < 1 with radius of convergence

R = 1, and diverges if |x− 5| > 1.

Test for endpoint convergence: |x− 5| < 1 implies 4 < x < 6

• When x = 4, then
∑∞

n=1
(x−5)n

n2 =
∑∞

n=1
(−1)n
n2 , which is convergent absolutely.

• When x = 6, then
∑∞

n=1
(x−5)n

n2 =
∑∞

n=1
1
n2 is also convergent.

Therefore the interval of convergence is [4, 6].

Exercise 5.2: Find the radius and interval of convergence of the power series

(a)
∞∑
n=0

xn

n
(b)

∞∑
n=1

(x− 2)n

2n+1
(d)

∞∑
n=0

n(2x + 1)n

3n
.

5.3 Algebraic Operation on Convergent Power Series

5.3.1 Addition of power series

Let
∑∞

n=0 anx
n and

∑∞
n=0 bnx

n be two power series, then the two power series can

be added and subtracted term by term just like series of constants. That is,

∞∑
n=0

anx
n ±

∞∑
n=0

bnx
n =

∞∑
n=0

(an ± bn)xn =
∞∑
n=0

cnx
n.

The interval of convergence of the resulting sum or difference is the intersection

of the intervals of convergence of the two original series.

Activity: Let
∑∞

n=0 x
n and

∑∞
n=0(

x
2)n be two power series, then find the interval

of convergence of each power series and their sum.

5.3.2 Multiplication of power series

Two power series can be multiplied just as we multiply polynomials.

Theorem: If A(x) =
∑∞

n=0 anx
n and B(x) =

∑∞
n=0 bnx

n converges absolutely for

|x| < R and

cn = a0bn + a1bn−1 + a2bn−2 + · · ·+ an−1b1 + anb0 =
n∑

k=0

akbn−k,
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then
∑∞

n=0 cnx
n converges absolutely to A(x)B(x) for |x| < R:( ∞∑

n=0

anx
n
)
.
( ∞∑
n=0

bnx
n
)

=
∞∑
n=0

cnx
n.

Finding the general coefficient cn in the product of two power series can be very

tedious. Therefore, we often limit the computation of the product to the first few

terms.

Example:

5.4 Representations of Functions as Power Series

In this section we deal with representing certain functions as power series ei-

ther by manipulating geometric series or by differentiating or integrating of such

a series. The reason for doing this is that it provides us with a way of integrating

functions that do not have elementary antiderivatives, for solving certain differ-

ential equations, or for approximating functions by polynomials.

We start by recalling the geometric series

a + ar + ar2 + ar3 + · · · =
∞∑
n=0

arn

which converges if |r| < 1 and diverges if |r| ≥ 1. When it converges, its value is
a

1−r .

Letting a = 1 and replacing r with x, we can express it as a function below.

f(x) =
1

1− x
= 1 + x + x2 + x3 + · · · =

∞∑
n=0

xn for |x| < 1. (5.4.1)

Then the function on the left and the power series on the right produce the same

result.
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Example: Find a power series representation of :

(a) f(x) =
1

1− x2
(b) f(x) =

1

1 + x
(c) f(x) =

x2

1− x2
(d) f(x) =

1

4 + 2x

Solution: (a) Replacing x by x2 in (5.4.1), we get

1

1− x2
= 1 + x2 + (x2)2 + (x2)3 + · · · =

∞∑
n=0

(x2)n =
∞∑
n=0

x2n , |x| < 1.

(b) Replacing x by −x in (5.4.1), we get

1

1 + x
=

1

1− (−x)
= 1+(−x)+(−x)2+(−x)3+· · · =

∞∑
n=0

(−x)n =
∞∑
n=0

(−1)n xn, |x| < 1

(c) Multiplying the series representation of f(x) = 1
1−x2 by x2, we get

x2

1− x2
= x2

1

1− x2
= x2

∞∑
n=0

x2n =
∞∑
n=0

x2n+2; |x| < 1.

(d) Write the given function in the form of (5.4.1), and proceeding as above, we

get

1

4 + 2x
=

1

4(1− (−x2 ))
=

1

4

∞∑
n=0

(−x
2

)n
=

1

22

∞∑
n=0

(−1)n

2n
xn =

∞∑
n=0

(−1)n

2n+2
xn.

This series converges if |−x2 | < 1, which is the same as |x| < 2, or −2 < x < 2.

Exercise:

5.4.1 Differentiation and Integration of Power Series

The domain of the function f(x) =
∑∞

n=0 cn(x− a)n is the interval of convergence

of the series. Differentiation and integration of functions represented by power

series can be computed similarly as we can differentiate or integrate each terms for

polynomial functions. This is called term-by-term differentiation and integration.

Theorem 5.4.1.1: If the power series
∑∞

n=0 cn(x− a)n has radius of convergence

R > 0, then the function f defined by

f(x) =
∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · ·
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is differentiable on the interval (a−R, a + R) and

• f ′(x) =
∞∑
n=1

n cn(x−a)n−1 = c1+2c2(x−a)+3c3(x−a)2+ · · · (5.4.2)

•
∫

f(x) dx = C+
∞∑
n=0

cn
(x− a)n+1

n + 1
= C+c0(x−a)+c1

(x− a)2

2
+c2

(x− a)3

3
+· · · (5.4.3)

The radius of convergence of the series obtained by differentiating or integrating

a power series is the same as that of the original power series , but the interval of

convergence may differ.

Equations (5.4.2) and (5.4.3) above can be written in the form

d

dx

[ ∞∑
n=0

cn(x− a)n
]

=
∞∑
n=0

d

dx
[cn(x− a)n] and

∫ [ ∞∑
n=0

cn(x− a)n
]
dx =

∞∑
n=0

∫
cn(x− a)n dx

Example: Find a power series representation and radius of convergence of the

following functions :

(a) f(x) =
1

(1− x)2
(b) f(x) = ln(1 + x) (c) f(x) = tan−1(x)

Solution:

(a) 1
(1−x)2 = d

dx

(
1

1−x

)
. Thus,

f(x) =
1

(1− x)2
=

d

dx

( 1

1− x

)
=

d

dx

( ∞∑
n=0

xn
)

=
∞∑
n=1

nxn−1, ; |x| < 1.

(b) f(x) = ln(1+x) =

∫
1

1 + x
dx =

∫ ( ∞∑
n=0

(−1)n xn
)
dx = C+

∞∑
n=0

(−1)n xn+1

n + 1
,

|x| < 1.

To determine the value of C, we put x = 0 in the equation and we get C = 0.
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Thus f(x) = ln(1 + x) =
∑∞

n=0
(−1)n xn+1

n+1

(c) f(x) = tan−1(x) =

∫
1

1 + x2
dx =

∫ ( ∞∑
n=0

(−1)n x2n
)
dx = C+

∞∑
n=0

(−1)n x2n+1

2n + 1
,

|x| < 1.

When x = 0, tan−1(0) = 0 and hence C = 0. Therefore, the power series

representation of f(x) = tan−1(x) is
∑∞

n=0
(−1)n x2n+1

2n+1 .

Exercise:

5.5 Taylor Series; Taylor Polynomial and Application

In the preceding section we were able to find power series representation for a

certain restricted class of functions. In this section we investigate more general

cases for finding power series representations.

Suppose that f(x) is any function that has a power series representation or expan-

sion centered at x = a that is valid for all x in an interval (a−R, a+R) with R > 0:

f(x) =
∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · · .

Then by theorem 5.4.1.1, we may differentiate the series term by term to obtain

f(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

f ′(x) = c1 + 2 c2(x− a) + 3 c3(x− a)2 + 4 c4(x− a)3 + · · ·

f ′′(x) = 2 c2 + 2 · 3 c3(x− a) + 3 · 4 c4(x− a)2 + 4 · 5 c5(x− a)3 + · · ·
...

f (k)(x) = k! ck + (k + 1)! ck+1 (x− a) + · · ·

Setting x = a in each of these series, we find that

f(a) = c0, f
′(a) = c1, f

′′(a) = 2 c2, · · · , f (k)(a) = k! ck,
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and solving for ck, we get the formula

ck =
f (k)(a)

k!
.

5.5.1 Taylor Series

Definition: Let f be a function with derivatives of all orders throughout some

interval containing a as an interior point. Then the Taylor series generated by

f at x = a is:

∞∑
k=0

f (k)(a)

k!
(x−a)k = f(a)+

f ′(a)

1!
(x−a)+

f ′′(a)

2!
(x−a)2+ · · · f

(k)(a)

k!
(x−a)k+ · · · .

If a = 0, then the Taylor series
∑∞

k=0
f (k)(0)

k! xk is called the Maclaurin series

of f .

Example: Find the Taylor Series for the functions

(a) f(x) = ex at a = 1 and a = 0;

(b) f(x) =
1

x
at a = 2;

(c) f(x) = sin x at a = 0

(d) f(x) = ln(x + 1)at a = 0

Solution: (a) • When a = 1, we have,

f(x) = ex ,

f ′(x) = ex ,

f ′′(x) = ex ,

...

f (n)(x) = ex ,

f(1) = e ,

f ′(1) = e ,

f ′′(1) = e ,

...

f (n)(1) = e

Therefore,

f(x) = ex = f(1)+
f ′(1)

1!
(x−1)+

f ′′(1)

2!
(x−1)2+

f ′′′(1)

3!
(x−1)3+· · ·+f (n)

n!
(x−1)n+· · ·
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Hence, the Taylor series of f(x) = ex at a = 1 is

ex = e +
e

1!
(x− 1) +

e

2!
(x− 1)2 + · · ·+ e

n!
(x− 1)n + · · · =

∞∑
n=0

e

n!
(x− 1)n

• When a = 0, f (n)(0) = e0 = 1 for all n, and thus

f(0) = f ′(0) = f ′′(0) = · · · = f (n)(0) = 1, with coefficient cn = f (n)(0)
n! = 1

n! .

Therefore, the resulting series is the Maclaurine series, which is given by

ex =
∞∑
n=0

xn

n!
= 1 +

x

1!
+

x2

2!
+

x3

3!
+ · · · .

(b)

f(x) =
1

x
,

f ′(x) =
−1

x2
,

f ′′(x) =
2

x3
=

2!

x3
,

f ′′′(x) =
−6

x4
=
−3!

x4
,

...

f (n)(x) =
(−1)nn!

x(n+1)
,

f(2) =
1

2
,

f ′(2) =
−1

22
,

f ′′(2) =
2

23
=

2!

23
,

f ′′′(2) =
−6

24
=
−3!

24
,

...

f (n)(2) =
(−1)nn!

2(n+1)
,

Therefore, the Taylor series of f(x) = 1
x is

f(2) +
f ′(2)

1!
(x− 2) +

f ′′(2)

2!
(x− 2)2 +

f ′′′(2)

3!
(x− 2)3 + · · ·+ f (n)(2)

n!
(x− 2)n + · · ·

=
1

2
− 1

22 · 1!
(x− 2) +

2!

23 · 2!
(x− 2)2 − 3!

24 · 3!
(x− 2)3 + · · ·+ (−1)nn!

2(n+1)n!
(x− 2)n + · · ·

=
1

2
− 1

22
(x− 2) +

1

23
(x− 2)2 − 1

24
(x− 2)3 + · · ·+ (−1)n

2(n+1)
(x− 2)n + · · ·

=
∞∑
n=0

(−1)n

2n+1
(x− 2)n.

10



(c)

(d)

Remark: If f can be represented as a power series about a, or f has derivatives

of all orders on an interval containing a as center, then f is equal to the sum of

its Taylor series. That is

f(x) =
∞∑
k=0

f (k)(a)

k!
(x− a)k = f(a) +

f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · · .

Activity: Does there exist functions that are not equal to the sum of their Taylor

series?

Exercise: Find the Taylor series of:

5.5.2 Taylor Polynomials and Application

Definition: Let f be a function such that the nth derivative, f(x)(n) exists at a

in some interval containing a as interior point. Then the polynomial:

Pn(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)2,

or pn(x) =
n∑

k=0

f (k)(a)

k!
(x−a)kis called thenthdegree Taylor’s polynomials offata.

Example: Find the Taylor polynomial of

a)f(x) = ex at a = 2, b) f(x) =
1

1− x
at a = −1
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Solution: a)

f(x) = ex ,

f ′(x) = ex ,

f ′′(x) = ex ,

...

f (n)(x) = ex ,

f(2) = e2 ,

f ′(2) = e2 ,

f ′′(2) = e2 ,

...

f (n)(2) = e2

Therefore,

pn(x) = f(2) +
f ′(2)

1!
(x− 2) +

f ′′(2)

2!
(x− 2)2 + · · ·+ f (n)(2)

n!
(x− 2)n

=
n∑

k=0

e2

n!
(x− 2)k

b)

f(x) =
1

1− x
,

f ′(x) =
1

(1− x)2
,

f ′′(x) =
2

(1− x)3
,

f (3)(x) =
6

(1− x)4
,

...

f (n)(x) =
n!

(1− x)n+1
,

f(−1) =
1

2
,

f ′(−1) =
1!

22
,

f ′′(−1) =
2!

23
,

f (3)(−1) =
3!

24
,

...

f (n)(−1) =
n!

2n+1

Therefore,

pn(x) = f(−1) +
f ′(−1)

1!
(x + 1) +

f ′′(−1)

2!
(x + 1)2 + · · ·+ f (n)(−1)

n!
(x + 1)n

=
1

2
+

1

22
(x + 1) +

1

23
(x + 1)2 + · · ·+ 1

2n+1
(x + 1)n

=
n∑

k=0

1

2k+1
(x + 1)k
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Exercise: Find a formula for the nth Taylor polynomial of the functions

a)f(x) =
√
x at a = 4, b) f(x) = cos x at a = 0, c) f(x) = ln(1+x) at a = 0

Theorem (Taylor’s Theorem): If f is differentiable (n + 1) times on an

interval I containing a and x, and if pn(x) is the Taylor polynomial of degree n

for f about x = a, then

f(x) = pn(x) + Rn(x) (Taylor formula with remainder),

where the remainder (error) term Rn(x) is called Lagrange remainder and is

given by

Rn(x) =
f (n+1)(c)

(n + 1)!
(x− a)n+1 for some c between x and a.

If Rn(x) → 0 as n → ∞ on I, we say that the Taylor series generated by f at

x = a converges to f(x) on I, and we write

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n.

Theorem (The remainder estimation theorem): If |f (n+1)(x)| ≤ M for all

x in I, in the above theorem, then

|Rn(x)| = M

(n + 1)!
|x− a|n+1 for allx ∈ I.

Example 1: Estimate f(x) = sinx by a 4th degree polynomial in x at a = 0 if

0 ≤ x ≤ 0.2.
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Solution:
f(x) = sin x ,

f ′(x) = cos x ,

f ′′(x) = − sinx ,

f ′′′(x) = − cosx ,

f (4)(x) = sin x ,

f (5)(x) = sin x ,

f(0) = 0 ,

f ′(0) = 1 ,

f ′′(0) = 0 ,

f ′′′(0) = −1 ,

f (4)(0) = 0; ,

f (5)(c) = cos c; ,

Therefore,

pn=4(x) = x− x3

6
, and |R4(x)| = cos c

5!
x5 ≤ 1

120
x5, since |f (5)(c)| = | cos c| ≤ 1.

Now for 0 ≤ c ≤ 0.2, take x = 0.2 and |R4(x)| ≤ 1
120(0.2)5 ≈ 2.6̇×10−6 < 3×10−6.

Hence, in the given range f(x) = sin x is estimated by

f(x) = sinx = x− x3

6
± 0.000003.

Example 2 Approximate 3
√
e to an accuracy of five decimal place.

Solution: By Taylor formula f(x) = Pn(x) + Rn(x). That is

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ Rn(x),where Rn(x) =

f (n+1)(c)

(n + 1)!
xn+1.

Since f(x) = ex, 3
√
e = e

1
3 = f(13). So we want to approximate f(13).

Consider Pn(x) is an approximation, then the error will be |f(1/3)− Pn(1/3)| =
|Rn(1/3)|. Consequently, if we find an n such |Rn(x)| < 10−5 = 0.00001. Then

Pn(1/3) will be the desired approximation.

Now by Taylor Theorem, there exist a number c between 0 and 1/3 such that

Rn(1/3) = f (n+1)(c)
(n+1)! (13)n+1.

Since f (n+1)(c) = ec and e
1
3 < 2, Rn(1/3) = ec

(n+1)!(
1
3)n+1 < 2

(n+1)!(
1
3)n+1
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By Computing 2
(n+1)!(

1
3)n+1 for n = 1, 2, · · · , 5, we get that |Rn(1/3)| < 10−5 if

n ≥ 5. i.e |R5(1/3)| < 2
6!36 = 1

(360)(729) < 10−5.

Thus P5(
1
3) is the desired approximation to 3

√
e.

Therefore

P5(
1

3
) = 1 +

1

3
+

1

2!
(
1

3
)2 +

1

3!
(
1

3
)3 +

1

4!
(
1

3
)4 +

1

5!
(
1

3
)5 =

5087

3645
≈ 1.39561.

Hence, we conclude that 1.39561 approximate 3
√
e with an error less than 10−5.

Example 3: Evaluate the integrals

a)

∫
e−x

2

dx as an infinite series

b)

∫ 1

0

e−x
2

dx correct to within an error of 0.001

Solution a) Using the Maclaurin series of ex and substituting x by −x2 we get

e−x
2

=
∞∑
n=0

(−x2)n

n!
=

∞∑
n=0

(−1)nx2n

n!
= 1− x2

1!
+

x4

2!
− x6

3!
+ · · ·

Integrating term by term∫
e−x

2

dx =

∫ (
1− x2

1!
+

x4

2!
− x6

3!
+ · · ·

)
dx

= C + x− x3

3 · 1!
+

x5

5 · 2!
− x7

7 · 3!
+ · · ·

= C +
∞∑
n=0

(−1)n x2n+1

(2n + 1) n!

b) By fundamental theorem of calculus,∫ 1

0

e−x
2

dx =
[
C + x− x3

3 · 1!
+

x5

5 · 2!
− x7

7 · 3!
+ · · ·

]∣∣∣1
0

= 1− 1

3
+

1

10
− 1

42
+

1

216
− · · ·

≈ 1− 1

3
+

1

10
− 1

42
+

1

216
≈ 0.7475
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The Taylor Estimation Theorem shows that the error involved in this approxima-

tion is less than 1
11·5! = 1

1320 < 0.001.

Example 4 Determine the Taylor series of
∫

sinx
x dx

Solution Using the Taylor series sinx =
∑∞

n=0
(−1)n x2n+1

(2n+1)! about x = 0,

sinx

x
=

1

x
sinx =

1

x

∞∑
n=0

(−1)n x2n+1

(2n + 1)!
=

∞∑
n=0

(−1)n x2n

(2n + 1)!
.

Thus,∫
sinx

x
dx =

∫ ∞∑
n=0

(−1)n x2n

(2n + 1)!
dx =

∞∑
n=0

∫
(−1)n x2n

(2n + 1)!
dx =

∞∑
n=0

(−1)n x2n+1

(2n + 1)(2n + 1)!
+C.

Example 5 Approximate
∫ 1

0 sin(x2) dx to four decimal place Solution Using

the Taylor series representation

sinx =
∞∑
n=0

(−1)n x2n+1

(2n + 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · .

Thus

sin(x2) = x2 − x6

3!
+

x10

5!
− x14

7!
+ · · · .

Applying term by term integration and the fundamental theorem of calculus, we

get ∫ 1

0

sin(x2) dx =
[x3

3
− x7

7 · 3!
+

x11

11 · 5!
− x15

15 · 7!
+ · · ·

]∣∣∣1
0

=
1

3
− 1

42
+

1

1320
− 1

75600
+ · · ·

≈ 0.3103, which is the sum of the first three terms.

Exercise: 1. Approximate e with an error of less than 10−6.

2. Use the Maclaurin series for sinx to approximate sin 3o to five decimal place

accuracy.

3. Approximate ln 2 with an error less than 0.01.
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4.

5.

6.

Binomial Series

Binomial series is a Taylor series with many applications. Some of the application

of Binomial series is to approximate power or root functions of the form f(x) =

(1 + x)m, where m is any constant.

The Maclaurin series generated by f(x) = (1 + x)m is

f(x) = (1 + x)m = 1 + mx +
m(m− 1)

2!
x2 +

m(m− 1)(m− 2)

3!
x3 + · · ·

m(m− 1)(m− 2) · · · (m− k + 1)

k!
xk + · · ·

=
∞∑
k=0

(
m

k

)
xk

This series is called binomial series, which converges absolutely for |x| < 1.(
m
k

)
is called binomial coefficient, and defined by

(
m
k

)
= m(m−1)(m−2)···(m−k+1)

k! .

In particular,
(
m
0

)
= 1,

(
m
1

)
= m,

(
m
2

)
= m(m−1)

2!

Example 1: Find the Maclaurin series of f(x) = (1 + x)−1.

Solution: m = −1;
(−1

0

)
= 1;

(−1
1

)
= −1;

(−1
2

)
= −1(−1−1)

2! = 1; · · · ;
(−1

k

)
=

−1(−2)(−3)···(−k)
k! = (−1)k

(
k!
k!

)
= (−1)k

Therefore, (1 + x)−1 =
∑∞

k=0(−1)kxk = 1− x + x2 − x3 + · · ·+ (−1)kxk + · · · .

Example 2: Find the Maclaurin series of f(x) = (1 + x)
1
2 .

Solution; m = 1/2;
(
1/2
0

)
= 1;

(
1/2
1

)
= 1/2;

(
1/2
2

)
= −1/8;

(
1/2
3

)
=

1/16;
(
1/2
4

)
= −15/384; · · · ;

(
1/2
k

)
= (−1)n+11·3·5···(2k−3)

2kk!
.
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Therfore,

(1 + x)1/2 =
∞∑
k=0

(
1/2

k

)
xk = 1 +

1

2
x +

∞∑
k=2

(−1)n+11 · 3 · 5 · · · (2k − 3)

2kk!
xk

= 1 +
1

2
x +

∞∑
k=2

(−1)n+11 · 3 · 5 · · · (2k − 3)

2 · 4 · ·6(2k)
xk.

Chapter Summary:
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